Data integrity

Data integrity is the maintenance of, and the assurance of, data accuracy and consistency over its entire life-cycle[1] and is a critical aspect to the design, implementation, and usage of any system that stores, processes, or retrieves data. The term is broad in scope and may have widely different meanings depending on the specific context – even under the same general umbrella of computing. It is at times used as a proxy term for data quality,[2] while data validation is a pre-requisite for data integrity.[3] Data integrity is the opposite of data corruption.[4] The overall intent of any data integrity technique is the same: ensure data is recorded exactly as intended (such as a database correctly rejecting mutually exclusive possibilities). Moreover, upon later retrieval, ensure the data is the same as when it was originally recorded. In short, data integrity aims to prevent unintentional changes to information. Data integrity is not to be confused with data security, the discipline of protecting data from unauthorized parties. Continue reading “Data integrity”

Linear regression

In statistics, linear regression is a linear approach to modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression.[1] This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.[2] Continue reading “Linear regression”

Hello world!

Welcome to WordPress. This is your first post. Edit or delete it, then start writing!